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1. Comparison Results of Efficiency
In this section, we compare our method with several

available disparity estimation algorithms for light field, and
evaluate the advantages of our method in GPU memory con-
sumption and model parameters.
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Figure 1. Comparison in performance and efficiency of light field
disparity estimation algorithms.

It can be seen from Fig. 1, compared to EpiNet-7 and
EpiNet [9], our proposed FastLFnet greatly reduces GPU
memory consumption and network parameters while main-
taining competitive performance. DslfNet [8] requires a
large number of model parameters because FlowNet 2.0 [4]
is used as the backbone, and LFattNet [10] demands exces-
sive GPU memory owing to its huge 3D CNN layers.

2. Network Details
We report a detailed description of the feature extraction

and EFE module of FastLFnet. We first introduce the struc-
ture of Basic Block (or Resblock in the text). As shown in
Fig. 2, the basic structure we used follows ResNet [1], with
the exception that it does not apply ReLU after summation.

The parameters of the feature extraction module of our
FastLFnet are detailed in Tab. 1, while the structure of the
BAM module is shown in Tab. 2. For the center view of
the light fields, after feature extraction, the feature maps
(first conv, layer1, layer2, layer3 up, layer4 up, layer5 up)
are sent to the edge guidance sub-network for edge feature
extraction.

Figure 2. The structure of Basic Block

Name Convolution layers Output dimension

input H × W × 1

first conv (3 × 3 conv, 16) × 2 H × W × 16

layer1 (basicblock, 32) × 6 H × W × 32

layer2 (basicblock, 64) × 2 H × W × 64

layer3 (basicblock, 64) × 2, stride 2 H/2 × W/2 × 64

layer4 (basicblock, 64) × 2, stride 2 H/4 × W/4 × 64

layer5 (basicblock, 64) × 2, stride 2 H/8 × W/8 × 64

layer3 up
3 × 3 conv, 16

bilinear interpolation
H × W × 16

layer4 up
3 × 3 conv, 8

bilinear interpolation
H × W × 8

layer5 up
3 × 3 conv, 8

bilinear interpolation
H × W × 8

concat[first conv, layer1, layer2,

layer3 up, layer4 up, layer5 up]
H × W × 144

last conv
3 × 3 conv, 64

3 × 3 conv, 32
H × W × 32

output bam module H × W × 32

Table 1. Parameters of the feature extraction module of our pro-
posed FastLFnet. H and W denote the height and width of the
input image. After each convolution, batch normalization and Re-
LU are followed, except for the last convolution of last conv.

The edge feature extraction (EFE) module of the edge
guidance sub-network is illustrated in Fig. 3 and the param-
eters are detailed in Tab. 4.



Figure 3. Overview of the edge feature extraction (EFE) module

Name Convolution layers Output dimension
input H × W × 32

gate 0
3 × 3 conv, 16

BN + ReLU
H × W × 16

gate 1
3 × 3 conv, 16

BN + ReLU
H × W × 16

gate 2
3 × 3 conv, 16

BN + ReLU
H × W × 16

gate out 1 × 1 conv, 1 H × W × 1
output input � (1 + sigmoid(gate out)) H × W × 32

Table 2. Parameters of the BAM module. BN denotes batch nor-
malization and � denotes element-wise multiply operation. The
dilated rate of gate 2 is set to 2.

Methods CAE [7] PS RF [6] RPRF-5 [3] EpiNet-7 [9] EpiNet [9] LFattNet [10] w/o Edge Ours

Boxes 22.11 23.49 27.55 16.41 15.79 10.57 15.25 11.44

Cotton 17.52 13.60 7.84 2.30 2.71 2.64 3.63 3.83

Dino 1.96 4.50 2.35 1.02 0.90 0.56 2.10 0.98

Sideboard 2.89 7.57 4.24 3.29 3.18 2.04 4.16 2.75

Average 11.12 12.29 10.49 5.75 5.65 3.95 6.28 4.75

Boxes 34.92 46.49 49.94 34.33 33.01 30.91 49.84 45.05

Cotton 22.70 16.07 15.68 7.82 7.39 5.49 18.20 9.90

Dino 13.05 23.34 27.90 9.02 8.49 6.68 24.22 14.83

Sideboard 19.04 32.98 21.10 15.81 14.70 9.66 31.29 19.18

Average 22.43 29.72 28.65 16.75 15.90 13.19 30.89 22.24

Table 3. Quantitative comparison on the metrics of Discon MSE
(row 2 - 6) and Discon BadPix (row 7 - 11).
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Figure 4. Error maps of Discon BadPix for the scene Sideboard.

3. More Evaluations on Discontinuity Regions

We make more quantitative and visual evaluations with
different metrics at discontinuity and occlusion regions.
The Discon MSE and Discon BadPix metrics on the 4D
Light Field Dataset [2], i.e., the mean square error and the

Index Input Convolution layers Output Output dimension
1 sobel edge (3 × 3 conv, 16) × 2 pre conv H × W × 16

2
pre conv
first conv

concat[pre conv, first conv] cat1 0 H × W × 32

3 cat1 0 (basicblock, 32) × 3 cat1 1 H × W × 32
4 cat1 1 3 × 3 conv, 16 cat1 2 H × W × 16
5 layer1 3 × 3 conv, 16 layer1 down H × W × 16

6
cat1 2

layer1 down
concat[cat1 2, layer1 down] cat2 0 H × W × 32

7 cat2 0 (basicblock, 32) × 3 cat2 1 H × W × 32
8 cat2 1 3 × 3 conv, 16 cat2 2 H × W × 16

9 layer2
3 × 3 conv, 32
3 × 3 conv, 16

layer2 down H × W × 16

10
cat2 2

layer2 down
concat[cat2 2, layer2 down] cat3 0 H × W × 32

11 cat3 0 (basicblock, 32) × 3 cat3 1 H × W × 32
12 cat3 1 3 × 3 conv, 16 cat3 2 H × W × 16

13
cat3 2

layer3 up
concat[cat3 2, layer3 up] cat4 0 H × W × 32

14 cat4 0 (basicblock, 32) × 3 cat4 1 H × W × 32
15 cat4 1 3 × 3 conv, 16 cat4 2 H × W × 16

16
cat4 2

layer4 up
layer5 up

concat[cat4 2, layer4 up, layer5 up] cat5 0 H × W × 32

17 cat5 0 (basicblock, 32) × 3 cat5 1 H × W × 32
18 cat5 1 3 × 3 conv, 16 cat5 2 H × W × 16
19 cat5 2 3 × 3 conv, 16 res conv H × W × 16

20
res conv
pre conv

ReLU(pre conv + res conv) out feature H × W × 16

21 out feature 3 × 3 conv, 16 edge feature H × W × 16

22 edge feature
1 × 1 conv, 1

sigmoid
disparity edge H × W × 1

Table 4. The architecture of the EFE module. The input sobel edge
is obtained from the input image with the Sobel edge detection
operation [5]. The features indicated by italic text are obtained
from the previous feature extraction module. Batch normalization
and ReLU are employed in all convolution layers, apart from the
layers of index 19 and 22.

percentage of bad pixels (the absolute error greater than
0.07) at discontinuity regions, are given in Tab. 3. The er-
ror maps of Discon BadPix for Sideboard scene are shown
in Fig. 4. As shown, compared with the state-of-the-art
methods, our method achieves better Discon MSE scores
and comparable Discon BadPix with high computational
efficiency. Besides, we also add the results of our method
without edge guidance, and we can see that by introducing
the light-weight edge guidance module (refer to the effec-



tiveness ablation results in Tab. 2 in the paper), the perfor-
mance of our method on edge regions is largely improved
on average in an efficient way.
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